

Robotized Object Recognition and Pick-and-Place Operations

Students: Zhamilya Saparova, Sayat Oskenov, Ali Dalash

Supervisor: Almas Shintemirov

Table of Contents

Motivation

Motivation behind of the project

Implementation

Method of the project and results

2

Related Works

Related Works

Conclusion

Future works

Why?

- 1. Logistics
 - a. Complex network management
 - b. Capacity and Labour deficit
 - c. Warehouse management
- 2. Manufacturing
 - a. Inventory management
 - b. Defect Detection
- 3. Daily Life
 - a. Help aged / disabled people

Related Works

- 1. "Towards Assistive Robotic Pick and Place in Open World Environment" by Wang et. al.
- "Autonomous Object Detection and Grasping Using Deep Learning for Design of an Intelligent Assistive Robot Manipulation System" by Rakhimkul S. et. al.
- 3. "Robotic object recognition and grasping with a natural background" by Wei et. al.

Tools

Kinova Robotic Arm

Intel RealSense D435

Implementation

Simulation

Gazebo, Movelt

Object Recognition

Detecting object in 3D coordinates

Pick-and-Place

Motion planning for Kinova manipulator via Moveit on ROS

Simulation

Object Detection

Intel RealSense D435

Yolov5

depth

Point Cloud Data (PCD)

PCD processing

XYZ extraction

Multiple Objects Detection

Motion Planning

:::ROS

- Melodic version
 - Node
 - Message
 - o Topic
 - Service
 - to move
 - to grasp

Motion Planning

- Movelt strategy
 - o 3D model of the environment
 - o Plan the motion
 - o Dynamically check the environment
- Gazebo

Video demonstration

Overall Architecture

Object Detection Grasping RGB Image Yolov5 Mapping Detecting Centroids XYZ PCD PCD Processing Apping Detecting Centroids Apping Ros Movelt Gazebo

Conclusion

Tools we used

- Intel RealSense Depth Camera
- 2. Kinova Gen3

What we learned

- l. ROS
- 2. Gazebo
- 3. ROS packages
- 4. Object Detection Architecture
- 5. Mapping Algorithm

Future Work

- To detect multiple objects
- Autonomous Motion Planning
- Occlusion

Thanks!

We also thank ALARIS lab for the collaboration.

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Stories**