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I. ABSTRACT

This paper presents a system for automatic face recognition
in video streams. The system is composed of four main
parts: face detection, liveness detection, face tracking, and
face recognition. In the liveness detection part, we employ
two different methods to determine whether a face in a video
frame is real or fake, which helps prevent spoofing attacks
on the face recognition system. In the face tracking part,
we track the position and movement of faces across multiple
video frames. This helps the system maintain consistent face
recognition even when faces move or change in appearance.
In the face recognition part, we match detected faces against
a database of known faces using deep learning models that
learn features. The system outputs the identity of the detected
face if it is recognized as a match in the database.

Keywords: face recognition, video-based, deep learning,
face detection, liveness detection, face tracking, spoofing,
security.

II. INTRODUCTION

OWADAYS, face recognition is one of the most actively

studied problems in computer vision and biometrics.
Especially, video-based face recognition offers a plethora
of potential applications in the real-world including visual
surveillance, access control, and video content analysis. Rec-
ognizing faces from the video is generally more challenging
than still image-based face recognition. This is because of
the following reasons: a much larger amount of data to be
processed and significant intra/inter-class variations caused
by motion blur, low video quality, occlusion, frequent scene
changes, and unconstrained acquisition conditions.

This project develops an automatic system that allows
users to input the videos taken from surveillance cameras to
efficiently detect and recognize human faces that appeared
in the scene. The system should also enable the “liveness
detection”, i.e., realize if the face is from the real person (not
taken from the picture).

III. LITERATURE REVIEW

Video-based face detection has been a topic of interest in
computer vision for several years now. With the increase in
popularity of video content on social media, the need for
accurate and efficient face detection algorithms has become
more important than ever.

In recent years, deep learning-based approaches have gained
popularity in the field of face detection. One of the most
successful methods is the Region-based Convolutional Neural
Network (R-CNN) [7]. R-CNN uses a combination of object
proposals and a deep neural network to detect faces. It has been
shown to outperform traditional methods like Viola-Jones in

terms of accuracy, especially under challenging conditions like
low resolution and occlusion [8].

Another popular approach researched by Garg et al. is
YOLO (You Only Look Once) [9]. It is a highly efficient
and accurate method for detecting faces in real-time video
streams. YOLO is a deep learning algorithm that uses a single
neural network to detect objects, including faces, in images
and videos. The YOLO algorithm operates by dividing an
image into a grid and predicting bounding boxes and class
probabilities for each grid cell. This approach allows YOLO
to quickly and accurately detect objects, including faces, in a
video stream.

In video-based face detection, face tracking is an important
task that involves detecting and tracking faces over time.
One method for face tracking is the Kanade-Lucas-Tomasi
(KLT) algorithm, which uses optical flow to track faces [10].
Another method is the Mean-Shift algorithm, which uses color
histograms to track faces. Face tracking is a challenging task
due to variations in lighting, pose, and occlusion, and therefore
requires robust algorithms.

As deep learning architectures require millions of training
samples and access to powerful computational resources like
Graphical Processing Units (GPUs) in order to optimize mil-
lions of parameters and learn the multi-stage weights from
scratch, Ghazi and Ekenel [27] in their paper propose transfer
learning method for face recognition. According to their paper,
transfer learning can be applied in two ways with respect to
the volume of dataset. The first method involves adjusting
the weights of the pre-trained network. This approach is only
advised for sufficiently large datasets [29]. The second strategy
involves directly applying learnt weights to the targeted issue
in order to extract and subsequently categorize features. This
method works exceptionally well when there are few classes or
a tiny fresh dataset [30]. Authors concluded that comparing the
VGGFace model to the Lightened CNN model, the former has
demonstrated a greater transferability. This may be explained
by its more complex construction, which produces a more
abstract representation. Moreover, Qawaqneh et al. highlited
the efficiency of VGGFace over other CNN based models.
They observed that models VGGFace outperforms the models
for age estimation task, which demonstrates that a CNN
model can be used for age estimation to increase performance.
Also, they state that the usage of pre-trained CNN models
can resolve over-fitting issue on a large database for face
recognition task [28].

Face liveness detection is the process of determining
whether a facial biometric sample is live or spoofed. The
importance of liveness detection has increased significantly
with the widespread use of facial recognition systems in
various applications. One of the traditional techniques for
liveness detection is based on liveness cues, eye-blinking [11],



[12], [13], face and head movement [14], [15] (e.g., nodding
and smiling), gaze tracking. However, these liveness cues
should be obtained from the continuous video streams, which
is computationally inefficient and can be easily attacked. Most
of the recent papers treat the problem of anti-spoofing as a
binary classification problem (e.g., ‘0’ for live while ‘1’ for
spoofing faces, or vice versa) thus supervised by a simple
binary cross-entropy loss [16], [17], [18]. Other works use
deep pixel-wise information for these types of challenges [19].
Other work [20] proposes a method for face anti-spoofing that
uses semi-supervised learning to improve the generalizability
of the model. The proposed method uses a combination
of a supervised and semi-supervised learning approach. The
supervised component is trained on a labeled dataset, while
the semi-supervised component is trained on both labeled
and unlabeled data. The semi-supervised component uses a
consistency loss function to encourage the model to produce
similar outputs for the same input, even when the input is
perturbed.

In recent years, face recognition using FaceNet model
became on of the most popular techniques used. William et.
al shows that that FaceNet has better results than CASIA-
Webface and VGGFace2 models on public datasets such as
YALE, JAFFE, AT T, Georgia Tech, and Essex [21]. In
another research, which was conducted by Cahyono et. al,
FaceNet was found to be better than the architectural model
of Openface [22]. Moreover, FaceNet model in combination
with SVM has reached an accuracy of 100%.

IV. DATASETS

For the face liveness detection part “Large Crowdcollected
Face Anti-Spoofing Dataset” was used. It contains images in
“png” format for training, validation and testing. The images
are pre-processed, and faces are extracted. For the training data
it has 8299 images, 1223 are real and 7066 are fake images.
For the validation data it has 2948 images, 405 are real and
2543 are fake images. For the test data it has 7580 images, 314
are real and 7266 are fake images. All the images are collected
from Youtube, Amazon Mechanical Turk and Yandex Toloka
web services [23].

YouTube Faces dataset is a large-scale benchmark dataset
that contains over 3,000 videos of 1,595 individuals from
YouTube, with each individual having at least one video. The
videos are of various lengths, ranging from 48 frames to 6,070
frames, and contain different variations in pose, lighting, and
facial expression. The dataset was created to facilitate research
on video-based face recognition and facial expression analysis.

The problem statement for a video-based face recognition
project using the YouTube Faces dataset is to develop an algo-
rithm that can accurately identify individuals across different
videos and video frames based on their facial features. This
involves several challenges, including dealing with variations
in lighting, pose, and expression, as well as identifying the
same person across different videos that may have significant
visual differences.

The goal of our project would be to improve the accuracy
and robustness of video-based face recognition algorithms,

which have numerous applications in security, surveillance,
and personalization. By using the YouTube Faces dataset,
researchers can develop and evaluate their algorithms on a
large and diverse dataset that represents real-world challenges
in video-based face recognition.

The YouTube Faces dataset is annotated with several types
of information that can be useful for video-based face recog-
nition and facial expression analysis research. The annotations
include:

« Identity labels: Each video in the dataset is labeled with
the identity of the person appearing in the video. The
identities are represented by unique integer identifiers.

e Frame-level bounding boxes: Each frame in a video is
annotated with a bounding box that tightly encloses the
face of the person appearing in the frame. The bounding
boxes are provided in the form of (X,y) coordinates of
the top-left corner of the bounding box and its width and
height.

o Pose labels: The dataset also includes pose labels for
a subset of the videos. The pose labels indicate the
orientation of the head.

The annotations in the YouTube Faces dataset enable re-
searchers to develop and evaluate algorithms for various tasks,
such as face detection, face tracking, face recognition, and
facial expression analysis. The identity labels and frame-
level bounding boxes, in particular, are useful for develop-
ing face recognition algorithms that can identify individuals
across videos with varying lighting, pose, and expression.
The pose and expression labels, on the other hand, can be
used for developing algorithms that can recognize different
facial expressions or head poses. The quality scores can help
researchers filter out videos with poor annotations, which can
improve the accuracy of their algorithms.

V. METHODOLOGY

Four different tasks were completed in this project: face
detection, liveness detection method, face tracking and face
recognition.

A. Face Liveness Detection

Face liveness detection is the process of identifying whether
the given image is a real image or a printed, 3-D mask,
i.e. fake. For this task “Large Crowdcollected Facial Anti-
Spoofing Dataset” was used, because of its lightweight and
public availability. Since the data was pre-processed, the face
detection was not implemented for this part. This task was im-
plemented using plain CNN and MobileNetV2 architectures.

1) Baseline: For the baseline, we implemented simple CNN
based classification method in Tensorflow. The model consists
of 3 2D convolution layers and 2 Max pooling layer and 2
Dense layers. All convolution layers have ReLU activation
function for feature extraction. The input to the network is
of size (224, 224, 3). The last 2 Dense layers have sigmoid
activation function for binary classification. As an optimizer
Adam was used and binary cross-entropy loss was set. The
model was trained on NVIDIA GeForce 1650 GTX GPU with
batch size 24 and 20 epochs.



2) Main approach: For the main approach more com-
plex network was implemented. For feature extraction Mo-
bileNetV2 architecture was used with the pre-trained weights
“ImageNet”. MobileNetV2 is a great choice because it was
designed to be computationally efficient and lightweight. De-
spite its lightweight architecture, MobileNetV2 can achieve
high accuracy on image classification tasks. Its depthwise
separable convolutions help to preserve spatial information
while reducing computational complexity [24].

Fig. 1: MobileNetV2 architecture
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After the output of the pre-trained MobileNetV2 model ad-
ditional layers were added for classification. Dropout layer was
added to prevent overfitting. The last fully-connected layer’s
activation function is sigmoid for classification. Optimizer was
set as Adam and loss is binary cross entropy. Batch size is 24
with 20 epochs. Model was trained on NVIDIA GeForce 1650
GTX GPU.

B. Face Recognition

Face recognition is the process of identifying and verifying
the identity of a person based on their facial features. It is a key
application of computer vision. The process of face recognition
in computer vision typically involves several steps. In our case
with the given Youtube Faces dataset, the first step would be to
detect the face bounding box and crop them from the original
image frames. The MTCNN algorithm was used for the face
detection. It is a popular face detection algorithm that uses
deep learning techniques to detect and localize faces in images
with high accuracy. There are two versions of MTCNN, one
for keras library and the other is for pytorch library. As the
first implementation took more time for us to process all the
images, we chose the second, which is for pytorch library. We
saved the output in .npz file. The parameters of MTCNN:

mtcnn = MTCNN (image_size=160,
min_face_size=20, factor=0.709,
select_largest=False,

post_process=False, device=device)

margin=0,

We split the dataset into train, validation and test set
with 80:10:10 ratio, respectively. Two popular methods were
applied for the face recognition: VGGFace and FaceNet.

1) Baseline: We pass the train and validation set to VG-
GFace. The baseline model for face recognition is VGGFace
algorithm, which is a deep learning model for face recognition
trained on over 2 million images [26, 27, 28]. The model is
based on the popular VGGNet architecture, which consists of
several convolutional layers and fully connected layers. The
original VGGFace architecture has 26 layers [26]. We replace
the seven layers, which represented the three fully connected
output layers to custom layers. The newly additional layers
will be taught to recognize the images from the given dataset.
As we already have trained 19 layers by the VGGFacel6
model, we will only train the new added layers. The input
to the network is a face image, which is resized to 160x160
pixels. The first few layers of the network consist of convolu-
tional layers with small 3 x 3 filters, followed by max-pooling
layers with a 2 x 2 filter and stride of 2 . The last few layers
of the network are fully connected layers, which are used to
compute the identity of the face. The output of the network is
a vector of size 512, which represents the identity of the face
[27]. Below can be seen visual demonstration of VGGFace
architecture.

Fig. 2: VGGFace architecture [28]
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All the proccess has gone through GPUs (Graphical Pro-
cessing Units). We set loss to sparse categorical crossentropy
and evaluation metrics to accuracy. For the optimizer, we
tested three different popular optimizers: Adam (Adaptive
Moment Estimation), Adamax and SGD(Stochastic Gradient
Descent). SGD is a simple and widely used optimization
algorithm that updates the weights of a neural network based
on the average gradient of the loss function with respect to
the weights [31]. Coming to the Adam, it is a more advanced
optimization algorithm that combines the advantages of several
optimization techniques [31]. Adamax is a variant of the pop-
ular Adam optimizer, which is widely used in deep learning
for updating the weights of neural networks during training.
Adamax is designed to address some of the limitations of
Adam, especially in situations where the gradients are very
sparse or the learning rates are very high [31].

2) Main Approach: As a main approach for face recogni-
tion, we used feature extraction from an image using FaceNet
model and pass train and validation data to neural networks for
classification. For the sake of comparison, we used following
neural networks: Support Vector Classifier (SVC) and Multi-
Layer Perceptron (MLP). Dataset was divided in a same
manner as it was described in a baseline approach (80:10:10).

FaceNet is a CNN model that was developed by Google
researches for face recognition. It takes an image as an input
to map its values into Euclidean spaces. As an output, FaceNet



returns an array of 512 features, that will be used to find
similar faces. An architecture of the model can be seen at
figure 3 and 4. Basically, triplet loss function makes inputs
that are similar closer, while different images become more
distant. Face detection using MTCNN was used in order to
crop the face and use as an input [21].
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Fig. 3: FaceNet architecture
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Fig. 4: Triplet Loss

For face recognition classification we use widely used
neural networks: SVC and MLP. We could not try optimizing
the model by training with several parameters due to the
computational limitation. For SVC, we trained with two kernel
types for comparison, which are ’linear’ and ’rbf’. In a case of
MLP, we used for parameter options for number of neurons:
10, 12, 13, 14 and 15.

C. Face Tracking

For the final task, all of the research conducted was sum-
marized and face tracking algorithm was implemented. The
methodology of face tracking consists of several steps: input
preprocessing, face detection, face recognition and processing
the output. Preprocessing of the video was conducted by
dividing it into frames using Open Source Computer Vision
Library (OpenCV). For each frame, face detection method
using MTCNN was applied. By cropping the face from the
image, it was used as input for the face recognition technique.
Eventually, video file with a face box and name tag is provided
as an output file.

VI. EVALUATION METRIC

To evaluate the results of this paper, accuracy score will
be used by dividing the number of correct predictions by the
total number of predictions made, and then multiplying by
100 to convert the result to a percentage. This is a common
evaluation metric used in machine learning to measure how
well a model is able to predict the correct outcome for a given

task. Also, another popular metrics, confusion matrix, will be
used to evaluate classification tasks. It compares the actual
values of the target variable with the predicted values produced
by the model, and shows how often the model makes correct
or incorrect predictions.

VII. RESULTS & ANALYSIS
A. Face liveness Detection

1) Baseline: The CNN model was trained with batch size
of 24 and 20 epochs. Although the training accuracy score
was high on the test set it failed to show good results. From
Fig. 5 it can be seen that the accuracy on the training set is
approximately 85 percent.
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On the test set it showed precision score of 95 percent.
However, it predicted all images as fake ones. It can be seen
from the confusion matrix from below. It might be due to
overfitting, since no regularization or dropout layers were
added to this baseline model.

Real

true label

Spoof

predicted label

Fig. 7: Confusion matrix - baseline



2) Main approach: The main approach with MobileNetV2
architecture and Dropout layers on the other hand performed
well on training and test sets. From Fig. 8 it can be seen
that the model reached almost 99.5 percent accuracy and 0.5

percent loss.
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Fig. 9: Adam optimization loss

Also, from the confusion matrix from Fig. 10 it can be seen
that the main approach model performed well on test set. The
precision score is 99.35 percent.
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Fig. 10: Confusion matrix - MobileNetV2

B. Face Recognition

1) Baseline: VGGFace was experimented with three differ-
ent optimization techniques. On the Fig. 11, 12, 13 can be seen
the demonstration of model accuracy and loss on train set and
validation set using three optimizers. It can be noticed from
the figures that Adam optimizer fluctuates more compared to
Adamax and SGD. Also, SGD shows smoothest transition over
each epoch, which means that the model took more time to

learn.

Fig. 11: Adam optimization accuracy and loss
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Fig. 13: Adamax optimization accuracy and loss
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The model was verified with test set. The test accuracy score
for the Adam optimizer is 97.667%, for the Adamax is 98%
and for the SGD is 88.289%. Overall, from the accuracy score
values, it can be noticed that the Adamax optimizer shows the

best performance.

Also, below can be seen examples of predictions and ground
truth from the test set.
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Fig. 14: Prediction example

2) Main Approach: According to the Figure 15, SVC has
performed well on our dataset. This model has shown a minor
overfitting, because mean train accuracy is slightly higher
than the mean test result. However, it is negligible due to
the insignificant difference. The mean test accuracy obtained
using kernel ’rbf’ during cross-validation was 96.4%, while
mean train score reached 99.9%.
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Fig. 15: Mean train and mean test accuracy values for SVC
with two kernel variations

MLP has shown worse results than SVC. For all of the
parameters, the best result obtained was using 15 neurons in
hidden layer and adam solver, which can be seen at Figures 9
and 10 . The best mean testing score reached was about 88.1%,
while the training score was found to be 99.5%. Besides lower
testing score, there is a larger difference between traing and
testing accuracy.

SVC has shown best results, that is why we compute its
test accuracy on out test set. The results are following: train
accuracy is 99.95%, while test accuracy is 99.91%.
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Fig. 16: Mean train accuracy values for MLP
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Fig. 17: Mean test accuracy values for MLP

3) Face Tracking: An algorithm for taking as an input the
name of the folder with frames and returning an output of
the video with a name label and box around the face was
implemented. FaceNet model with SVC proved to be better
than VGGFace for out dataset, that is why FaceNet was used
for face recognition in this task. The output frame of the
algorithm can be seen at the Figure 18.

Fig. 18: Output of face tracking implementation

VIII. ERROR ANALYSIS

According to the results of this paper, there are no major
errors that could lower results significantly during our project.



One of the considerable limitations of our project is the dataset
we used. Despite the fact it consists of a large number of
people and frames from videos per each of them, it had several
drawbacks. Firstly, there are some people, for whom there was
only one video, which limits the diversity in training data and
increases overfitting. Another problem is the fact that for some
of the people, there were 2 people in the video. If someone will
have only 1 video, on which there are 2 people, the model will
not understand which face has to be processed. That is why we
have discarded this kind of data. Also, it should be mentioned
that the dataset weighted a lot and was computationally cost.
Due to this problem, only approximately 10% of the whole
dataset was used. Models could not train on large scale dataset
and many of parameters for neural networks were neglected
to include in the optimization.

IX. FUTURE WORK

For the future work, it is planned to train the algorithms on
more powerful hardware to cover whole dataset. The dataset
could also be manually preprocessed to get rid of untrainable
data. The problem of videos with multiple people could be
adapted. Also, to join all four task, face detection, liveness
detection method, face tracking and face recognition, to result
in one automatic face recognition system. Moreover, as all
members of team did not have web camera, we could not test
the algorithm on real-time based video.

X. CONCLUSION

This paper demonstrates video-based face recognition sys-
tem, which consist of four subunits: face detection, liveness
detection, face tracking, and face recognition. For the face
detection, current state-of-the-art MTCNN was employed as it
detects and localizes faces in images with high accuracy. For
the liveness detection task, two methods were compared: CNN
based model and MobileNetV2. In the comparison between
two architectures, both models performed well. However, due
to an unbalanced dataset, the CNN-based model incorrectly
classified all images as fake, whereas MobileNetV2 produced
more accurate results. For the face recognition task, also two
widely known algorithms were used: VGGFace and FaceNet.
We observed that training a new model from scratch is
computationally expensive, thus involved transfer learning.
According to obtained results, FaceNet model in combination
with SVC has reached better results than with MLP classifier.
Moreover, this model has also outperformed VGGFace model,
by getting test accuracy 1% higher. Thus, FaceNet model in
combination with SVC classification algorithm was used for
face recognition task. However, this difference is not major
and this issue has to be researched further. In the face tracking,
the position and movement of a face within each frame of a
video was detected. Video files can be captured into frames
and processed by the algorithm implemented in the project.
Moreover, it could modified to serve as a real-time face
detector and recognizer.
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